Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
نویسندگان
چکیده
PURPOSE Digital forward and back projectors play a significant role in iterative image reconstruction. The accuracy of the projector affects the quality of the reconstructed images. Digital breast tomosynthesis (DBT) often uses the ray-tracing (RT) projector that ignores finite detector element size. This paper proposes a modified version of the separable footprint (SF) projector, called the segmented separable footprint (SG) projector, that calculates efficiently the Radon transform mean value over each detector element. The SG projector is specifically designed for DBT reconstruction because of the large height-to-width ratio of the voxels generally used in DBT. This study evaluates the effectiveness of the SG projector in reducing projection error and improving DBT reconstruction quality. METHODS We quantitatively compared the projection error of the RT and the SG projector at different locations and their performance in regular and subpixel DBT reconstruction. Subpixel reconstructions used finer voxels in the imaged volume than the detector pixel size. Subpixel reconstruction with RT projector uses interpolated projection views as input to provide adequate coverage of the finer voxel grid with the traced rays. Subpixel reconstruction with the SG projector, however, uses the measured projection views without interpolation. We simulated DBT projections of a test phantom using CatSim (GE Global Research, Niskayuna, NY) under idealized imaging conditions without noise and blur, to analyze the effects of the projectors and subpixel reconstruction without other image degrading factors. The phantom contained an array of horizontal and vertical line pair patterns (1 to 9.5 line pairs/mm) and pairs of closely spaced spheres (diameters 0.053 to 0.5 mm) embedded at the mid-plane of a 5-cm-thick breast tissue-equivalent uniform volume. The images were reconstructed with regular simultaneous algebraic reconstruction technique (SART) and subpixel SART using different projectors. The resolution and contrast of the test objects in the reconstructed images and the computation times were compared under different reconstruction conditions. RESULTS The SG projector reduced the projector error by 1 to 2 orders of magnitude at most locations. In the worst case, the SG projector still reduced the projection error by about 50%. In the DBT reconstructed slices parallel to the detector plane, the SG projector not only increased the contrast of the line pairs and spheres but also produced more smooth and continuous reconstructed images, whereas the discrete and sparse nature of the RT projector caused artifacts appearing as patterned noise. For subpixel reconstruction, the SG projector significantly increased object contrast and computation speed, especially for high subpixel ratios, compared with the RT projector implemented with accelerated Siddon's algorithm. The difference in the depth resolution among the projectors is negligible under the conditions studied. Our results also demonstrated that subpixel reconstruction can improve the spatial resolution of the reconstructed images, and can exceed the Nyquist limit of the detector under some conditions. CONCLUSIONS The SG projector was more accurate and faster than the RT projector. The SG projector also substantially reduced computation time and improved the image quality for the tomosynthesized images with and without subpixel reconstruction.
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملDigital Breast Tomosynthesis Reconstruction using Spatially Weighted Non-convex Regularization
Regularization is an effective strategy for reducing noise in tomographic reconstruction. This paper proposes a spatially weighted non-convex (SWNC) regularization method for digital breast tomosynthesis (DBT) image reconstruction. With a non-convex cost function, this method can suppress noise without blurring microcalcifications (MC) and spiculations of masses. To minimize the non-convex cost...
متن کاملDigital Breast Tomosynthesis Reconstruction with Detector Blur and Correlated Noise
This paper describes a new reconstruction method for digital breast tomosynthesis (DBT). The new method incorporates detector blur into the forward model. The detector blur introduces correlation in the measurement noise. We formulate it as a regularized quadratic optimization problem with data-fit term that accounts for the non-diagonal noise covariance matrix. By making a few assumptions base...
متن کاملObservation of super-resolution in digital breast tomosynthesis.
PURPOSE Digital breast tomosynthesis (DBT) is a 3D x-ray imaging modality in which tomographic sections of the breast are generated from a limited range of tube angles. Because oblique x-ray incidence shifts the image of an object in subpixel detector element increments with each increasing projection angle, it is demonstrated that DBT is capable of super-resolution (i.e., subpixel resolution)....
متن کاملA 3D Forward and Back-Projection Method for X-Ray CT Using Separable Footprint
The computation burden of cone-beam forward and back-projectors is one of the greatest challenges facing iterative methods for 3D image reconstruction in CT. This paper describes a new separable footprint (SF) projector. It takes advantage of small polar angles of X-rays in cone-beam geometry to approximate the voxel footprint functions as 2D separable functions with simple rectangular function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2017